Lithium iron phosphate battery refers to a lithium ion battery that uses lithium iron phosphate as a positive electrode material. The cathode materials of lithium-ion batteries mainly include lithium cobalt oxide, lithium manganate, lithium nickel oxide, ternary materials, lithium iron phosphate, etc. Among them, lithium cobalt oxide is the cathode material used in the vast majority of lithium-ion batteries. In terms of material principle, lithium iron phosphate is also an intercalation and deintercalation process, which is exactly the same as lithium cobaltate and lithium manganate.

리튬 인산철 배터리

Lithium iron phosphate battery is a lithium ion secondary battery, one of the main uses is for power batteries, which has great advantages over NI-MH and Ni-Cd batteries. The charge and discharge efficiency of lithium iron phosphate batteries is high, and the charge and discharge efficiency can reach more than 90% under the rate discharge condition, while the lead-acid battery is about 80%. The following briefly introduces the seven advantages of lithium iron phosphate batteries.

1. Improvement of safety performance

The P-O bond in the lithium iron phosphate crystal is stable and difficult to decompose. Even at high temperature or overcharge, it will not collapse and generate heat like lithium cobalt oxide or form strong oxidizing substances, so it has good safety. A report pointed out that in the actual operation, a small number of samples were found to be burning in the acupuncture or short-circuit experiments, but no explosion occurred. In the overcharge experiment, a high voltage charging that was many times higher than the self-discharge voltage was used, and it was found that there were still explosion phenomenon. Even so, its overcharge safety has been greatly improved compared with ordinary liquid electrolyte lithium cobalt oxide batteries.

2. Improvement of lifespan

Lithium iron phosphate battery refers to a lithium ion battery that uses lithium iron phosphate as a positive electrode material.

The cycle life of long-life lead-acid batteries is about 300 times, and the maximum is 500 times, while the cycle life of lithium iron phosphate power batteries can reach more than 2,000 times, and the standard charging (5-hour rate) use can reach 2,000 times. The lead-acid battery of the same quality is "new half year, old half year, and maintenance and maintenance for half a year", which is 1~1.5 years at most, and lithium iron phosphate battery is used under the same conditions, the theoretical life will reach 7~8 years. Comprehensive consideration, the performance-price ratio is theoretically more than 4 times that of lead-acid batteries. High-current discharge can quickly charge and discharge high-current 2C, under the special charger, the battery can be fully charged within 40 minutes of 1.5C charging, and the starting current can reach 2C, but lead-acid batteries do not have this performance.

3. Good high temperature performance

The electric heating peak of lithium iron phosphate can reach 350℃-500℃, while lithium manganate and lithium cobaltate are only around 200℃. The working temperature range is wide (-20C--+75C), and the electric heating peak of lithium iron phosphate with high temperature resistance can reach 350℃-500℃, while lithium manganate and lithium cobaltate are only around 200℃.

4. Large capacity

Has a larger capacity than ordinary batteries (lead acid, etc.). The monomer capacity is 5AH-1000AH.

5. No memory effect

Rechargeable batteries often work under the condition of being fully charged, and the capacity will quickly drop below the rated capacity. This phenomenon is called the memory effect. Like nickel-metal hydride and nickel-cadmium batteries, there is memory, but lithium iron phosphate batteries do not have this phenomenon. No matter what state the battery is in, it can be used at any time without having to discharge it before charging.

6. Light weight

The volume of the lithium iron phosphate battery with the same specification and capacity is 2/3 of the volume of the lead-acid battery, and the weight is 1/3 of the lead-acid battery.

7. Environmental protection

Lithium iron phosphate batteries are generally considered to be free of any heavy metals and rare metals (nickel-metal hydride batteries require rare metals), non-toxic (SGS certified), non-polluting, comply with European RoHS regulations, and are an absolute green battery certificate. Therefore, the reason why the lithium battery is favored by the industry is mainly due to environmental protection considerations. Therefore, the battery has been included in the "863" national high-tech development plan during the "Tenth Five-Year Plan" period, and has become a key project supported and encouraged by the state.

Of course, lithium iron phosphate batteries also have shortcomings, such as poor low temperature performance, low tap density of positive electrode materials, and the volume of lithium iron phosphate batteries of equal capacity is larger than that of lithium ion batteries such as lithium cobalt oxide, so they have no advantages in micro batteries. When used in power batteries, lithium iron phosphate batteries, like other batteries, need to face the problem of battery consistency.